Bioavailability of insect neuropeptides: the PK/PBAN family as a case study.

نویسندگان

  • Aliza Hariton
  • Orna Ben-Aziz
  • Michael Davidovitch
  • Ronald J Nachman
  • Miriam Altstein
چکیده

The ability of unmodified linear peptides to penetrate the insect cuticle and exert bioactivity (e.g., stimulation of sex pheromone biosynthesis) was tested by topical application onto Heliothis peltigera moths of four insect neuropeptides (Nps) of the pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN) family: Helicoverpa zea PBAN (Hez-PBAN), Pseudaletia (Mythimna) separata pheromonotropin (PT), Leucophaea maderae PK (LPK) and Locusta migratoria myotropin (Lom-MT-II). The time kinetic of the peptides applied in double distilled water (DDW) or dimethylsulfoxide (DMSO) was tested and the activities of topically applied and injected peptides were compared. The results clearly indicated that all four peptides were highly potent but with differing activities in the two solvents: PBAN was most active in water, and PT in DMSO. The activity of PBAN in DDW lasted up to 8h post-application and its activity in this solvent showed a faster onset and a longer persistence than in DMSO. LPK and MT differed less in their kinetics between the two solvents. Topically applied PBAN at 1 nmol exhibited an equivalent or even significantly higher potency than the injected peptide at several different times post-treatment. Similar results were obtained with topically applied and injected LPK. The present results add important information on the bioavailability of unmodified linear peptides in moths, clearly indicate that linear hydrophilic peptides can penetrate the cuticle by contact application in aqueous solutions and in organic solvents very efficiently, reach their target organ and activate it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insect neuropeptide antagonists.

The development of a new integrated approach to the generation of a novel type of insect neuropeptide (Np) antagonists and putative insect control agents based on backbone cyclic compounds is described. The approach, termed the backbone cyclic neuropeptide-based antagonist (BBC-NBA), was applied to the insect pyrokinin (PK)/pheromone biosynthesis activating neuropeptide (PBAN) family as a model...

متن کامل

Pheromonotropic and melanotropic PK/PBAN receptors: differential ligand-receptor interactions.

The aim of the present study was to further characterize the PK/PBAN receptors and their interaction with various PK/PBAN peptides in order to get a better understanding of their ubiquitous and multifunctional nature. Two cloned receptors stably expressed in Spodoptera frugiperda (Sf9) cells were used in this study: a Heliothis peltigera pheromone gland receptor (Hep-PK/PBAN-R) (which stimulate...

متن کامل

A novel dihydroimidazoline, trans-Pro mimetic analog is a selective PK/PBAN agonist.

The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a significant role in the regulation of reproductive and developmental processes in a variety of insects. A transPro, type I beta-turn has been previously identified as important for the activity of PK/PBAN peptides. A PK/PBAN analog (PPK-Jo) incorporating a novel dihydroimidazole transPro mimetic motif was eval...

متن کامل

Evaluation of a PK/PBAN analog with an (E)-alkene, trans-Pro isostere identifies the Pro orientation for activity in four diverse PK/PBAN bioassays.

The pyrokinin/pheromone biosynthesis activating neuropeptide (PK/PBAN) family plays a multifunctional role in an array of important physiological processes in a variety of insects. An active core analog containing an (E)-alkene, trans-Pro isosteric component was evaluated in four disparate PK/PBAN bioassays in four different insect species. These bioassays include pheromone biosynthesis in the ...

متن کامل

Role of neuropeptides in sex pheromone production in moths.

Sex pheromone biosynthesis in many moth species is controlled by a cerebral neuropeptide, termed pheromone biosynthesis activating neuropeptide (PBAN). PBAN is a 33 amino acid C-terminally amidated neuropeptide that is produced by neuroendocrine cells of the subesophageal ganglion (SEG). Studies of the regulation of sex pheromone biosynthesis in moths have revealed that this function can be eli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Peptides

دوره 30 6  شماره 

صفحات  -

تاریخ انتشار 2009